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Abstract— Uncertain data clustering has been recognized as an
essential task in the research of data mining. Many centralized
clustering algorithms are extended by defining new distance
or similarity measurements to tackle this issue. With the fast
development of network applications, these centralized methods
show their limitations in conducting data clustering in a large
dynamic distributed peer-to-peer network due to the privacy
and security concerns or the technical constraints brought by
distributive environments. In this paper, we propose a novel
distributed uncertain data clustering algorithm, in which the
centralized global clustering solution is approximated by per-
forming distributed clustering. To shorten the execution time,
the reduction technique is then applied to transform the pro-
posed method into its deterministic form by replacing each
uncertain data object with its expected centroid. Finally, the
attribute-weight-entropy regularization technique enhances the
proposed distributed clustering method to achieve better results
in data clustering and extract the essential features for cluster
identification. The experiments on both synthetic and real-world
data have shown the efficiency and superiority of the presented
algorithm.

Index Terms— Attribute weight entropy, distributed clustering,
peer-to-peer (P2P) networks, uncertain data.

I. INTRODUCTION

CLUSTERING has emerged as an essential data mining
technique for statistical analysis, pattern recognition,

and image segmentation [1]–[3]. It partitions the data into
clusters according to the similarities between objects and
helps in extraction of new information or discovering new
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patterns. In the past few decades, a large number of clustering
algorithms have been proposed [4], in which the K-means
algorithm [5] is one well-known clustering method. Then the
variants of this algorithm are further discussed in [6] and [7],
and the strong consistency of this method has been proved
in [8] and [9].

However, in many real applications today, like sensor mon-
itoring and location-based services [10], data mostly contains
inherent uncertainty due to the random nature of the data gen-
eration, measurement inaccuracy, sampling discrepancy, data
staling, and other errors. Generally, with uncertainty, the data
object is no longer a single point in space but is represented
by a probability density function (pdf) [11]. The traditional
clustering algorithms are limited to considering geometric-
distance-based similarity measures between certain data
points, and cannot efficiently evaluate the difference between
uncertain data objects. Lots of new clustering algorithms for
uncertain data have been proposed to tackle this issue [12].

Early studies on uncertain data clustering are mainly
various extensions of traditional clustering algorithms for
certain data, by defining new similarity measurements between
uncertain data objects, including the ED-based similarity [13],
the density-based similarity [14], and the distribution-based
similarity [15]. Chau et al. [13] propose the first ED-based
clustering algorithm for uncertain data named the uncertain
K-means (UK-means) algorithm. It enhances the traditional
k-means algorithm with the use of a new distance-based
similarity, i.e., the expected distance (ED), to handle the data
uncertainty. Then, some improved algorithms are put forward
to reduce the complexity of ED calculations by using some
pruning tricks [16], [17] or by speeding up the ED calculation
itself [18]. The work [19] reduces the UK-means algorithm
to the certain K-means (CK-means) algorithm by replacing
each uncertain data object with its expected centroid, thereby
tremendously decreasing the computational complexity for
ED calculation. For the density-based clustering, Kriegel and
Pfeifle [14] define two fuzzy distance functions, i.e., the dis-
tance density function and the distance distribution function, to
express the similarity between uncertain data objects, and they
also integrate these new distance functions into the hierarchical
clustering method [20]. Different from these two kinds of simi-
larities above, the clustering algorithms with distribution-based
similarity consider using divergences to measure the similarity
between data objects. Most early researches usually utilize
Kullback–Leibler (KL) divergence or Bregman divergence to
cluster the object with known distribution [21], [22]. A recent
work on uncertain data clustering is based on probability
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distribution similarity [15], in which the uncertain data object
is modeled as a random variable following a probability distri-
bution and then the KL divergence is used to directly compute
the probability distribution similarity between uncertain data
objects. All these methods have a common characteristic: It is
that they are all based on centralized operation, i.e., data sets
are of small manageable sizes, usually residing on one central
site, and a single process performs clustering on the data.

In recent years, with the increasing number of real appli-
cations on distributed peer-to-peer (P2P) networks, uncertain
data analysis in large dynamic networks is likely to garner
increasing importance in the near future [23]. For example, in
a hotel booking system, customers are asked to evaluate hotels
through a series of indicators, such as facility information,
sanitary condition, service quality, and location information.
Each hotel can be scored by many customers. All evaluations
to a hotel should be modeled as an uncertain object on the
customer score space. In reality, hotels may be registered
in the different distributed sites that provide reservation ser-
vice. An important analysis work is to cluster the hotels
from all sites according to customer’s evaluation information.
As another example, a city usually deploys multiple dispersed
weather monitoring stations. Each station will monitor the
daily weather conditions, such as temperature, humidity, wind
speed, and so on. The daily weather data varies from day to
day. A period of the continuous weather monitoring records
(e.g., one month) can also be modeled as an uncertain object,
represented by a pdf. Performing clustering on the weather
condition data can reveal interesting insights on the weather
correlation between different regions of the city in different
months. In these new applications, data sources are distributed
over a large network containing no special central control.
The traditional centralized clustering approaches for uncertain
data have shown the weaknesses: 1) raw information sharing
is discouraged due to the confidentiality and security require-
ments in distributed P2P networks; 2) effective data collection
from all peers to the central site is not guaranteed due to the
energy or bandwidth limitations; and 3) high-computational
complexity with large data sets. These motivate seeking a new
clustering algorithm in distributed network environments for
uncertain data, i.e., the distributed uncertain data clustering.

Actually, in the last decades, a great deal of attention
has been paid to the distributed data clustering on P2P
networks [24]. Datta et al. [25] propose one of the first
distributed algorithms for P2P systems, named the P2P K-
means algorithm. This method predetermines the same initial
cluster prototypes at all peer nodes. Moreover, the update
of cluster prototypes at each peer is just to calculate the
mean of the data itself and the data of its neighbor peers,
not considering the consensus constraint of cluster proto-
types among neighboring peers. In [26], a good solution for
distributed clustering in Wireless Sensor Networks (WSNs)
is presented by recasting the global clustering to a set of
smaller local clustering problems with consensus constraints.
But the complex definition of the consensus constraint of the
cluster prototypes among peers increases the computational
complexity of the algorithm. Recently, Pedrycz [27], and
Pedrycz and Rai [28] introduce a new distributed clustering

architecture, named collaborative clustering, to operate on
the separate subsets of data collaboration by exchanging
information of local partition matrices. Hammouda [29] apply
the collaborative pattern to the distributed document clustering,
realizing the merge of peer documents into local clusters via
the exchange of cluster keyphrase summaries. However, these
collaborative approaches consider the fully connected network
structure and show the limitation for applications with large,
dynamic network.

One more important issue is that the existing distributed
clustering algorithms on P2P networks are all implemented
for certain data. To the best of our knowledge, this paper is
the first to study uncertain data clustering on distributed net-
work environments. We propose a novel distributed clustering
algorithm for uncertain data, named the distributed UK-means
(DUK-means) algorithm, which searches the global clusters by
capitalizing on the consensus constraint formulation and the
collaboration between neighboring peers. In this algorithm, the
local clustering is performed independently at each peer with
its optimization pursuits by integrating the local data objects
and the cluster prototype findings exchanged with the neigh-
bor peers, until reaching the global consensus of all peers.
In addition, considering the computational complexity of the
DUK-means algorithm caused by the calculation of the dis-
tance similarity between uncertain data objects, we reduce the
DUK-means algorithm to its deterministic form by replacing
each uncertain data object with its expected centroid. More-
over, the existing clustering algorithms for uncertain data often
treat all features equally in deciding the cluster memberships
of objects. This is not desirable in some applications, e.g.,
high-dimensions data clustering, where the cluster structure in
the data set is often limited to a subset of features rather than
the entire feature set. Subspace clustering provides an effective
solution to discover the clusters in different subspaces within
a data set [30]. With reference to [31] and [32], we apply the
attribute-weight-entropy regularization technique to the DUK-
means algorithm to achieve the ideal distribution of attribute
weights. Better clustering results are obtained, and the essen-
tial features are exacted for cluster identification. The experi-
ments on both synthetic and real-world data sets have shown
the efficiency and superiority of the presented algorithms.

The rest of this paper is organized as follows. The DUK-
means algorithm is presented in Section II. In Section III,
we reduce the DUK-means algorithm to its deterministic
form. In Section IV, the attribute-weight-entropy regularization
technique is incorporated into the proposed DUK-means algo-
rithm. Section V illustrates the experiment results of different
clustering algorithms on synthetic and real world data sets.
Finally, conclusions are drawn in Section VI.

II. DISTRIBUTED UNCERTAIN DATA CLUSTERING

A. Probability Density Function of Uncertain Data Object

Given the object set O = {o1, o2, · · · , oN }, N is the number
of uncertain data objects. Normally, each uncertain data object
on(1 ≤ n ≤ N) is a random variable xn following a probability
distribution in a continuous M-dimensional space RM , which
is described by a pdf fn . Usually, the pdf fn is unknown
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in real applications. Therefore, in this paper, the pdf fn of
the uncertain data object on is estimated by kernel density
estimation [33], [34], which is the sum of kernel functions
as

fn(xn) = 1

|Sn | (2π)M/2 ∏M
m=1 σm

∑

e∈Sn

M∏

m=1

e
− (xnm−em )2

2σ2
m (1)

where the sample point e ∈ Sn is one observation of the
random variable xn and is denoted by a M-dimensional vector,
i.e., e = [e1, e2, . . . , eM ]. Sn is a sample set that denotes all
the samples observed for the random variable xn and the size
of the sample set is represented by |Sn|. With the assumption
that the components of each data object are conditionally
independent, each kernel function in (1) is the product of M
Gaussian kernel functions. The mth Gaussian kernel function
is centered at em with variance σm . σm is called the bandwidth
and is set to 1.06 × δm |Sn |−(1/5) according to the Silverman
approximation rule [34], where δm is the standard deviation
of the mth dimension of the sample points in Sn , i.e., δm =
((1/|Sn|) ∑

e∈Sn
(em − μm)2)1/2, where μm = ∑

e∈Sn
em .

With the definition of pdf, we have

fn(xn) > 0 ∀xn ∈ RM (2)

and
∫

xn∈RM
fn(xn)dxn = 1. (3)

In the simulation part of this paper, even though we know
the preset distribution of data objects to emulate the situation
of real applications, we only randomly get some samples
according to the preset distribution and use (1) to approximate
the preset distribution. The number of samples in experiments
is simply fixed to 1000, i.e., |Sn | = 1000.

B. Distributed Uncertain K-Means Clustering Algorithm

Consider a distributed P2P network with J peers, where
each peer j (1 ≤ j ≤ J ) is allowed to communicate only
with its one-hop neighbors i ∈ N B j . The distributed P2P
network is assumed connected, meaning that there is at least a
multihop communication path between any two peers. In our
research, the distributed P2P network is considered to collect
the uncertain data objects and perform the clustering task.
Each peer j consists of a set of N j uncertain data objects
{o j n|1 ≤ n ≤ N j }. Each object o j n is a continuous random
variable x j n following a pdf f jn . We assume each peer j has
the data from each of the K clusters. Each cluster prototype
is denoted by c j k = [c jk1, c jk2, . . . , c jkM ] for 1 ≤ k ≤ K .
The new ED between the uncertain object o j n and the cluster
prototype c j k is defined as

ED(o j n, c j k) =
∫

x jn∈RM

M∑

m=1

(x jnm − c jkm)2 f jn(x j n)dx j n.

(4)

Then with the goal of minimizing ED in a distributive
mode, the distributed uncertain data clustering problem can

be formulated as

min F(U, C) =
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk E D(o j n, c j k)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

∫

x j n∈RM

×
M∑

m=1

(x jnm − c jkm)2 f jn(x j n)dx j n

s.t. c jkm = cikm , i ∈ N B j (5)

where U = [u jnk] is the membership degree matrix and
∑K

k=1 u jnk = 1, u jnk ∈ {0, 1}, u jnk = 1 means that the nth
data object is assigned to the kth cluster in the j th peer and
vice versa. C = [c jkm] is the cluster prototype matrix and
c jkm denotes the mth dimension of the kth cluster prototype
in the j th peer.

In this new objective function, given the f jn is a mixture of
Gaussians, we can derive the integral directly. The consensus
constraint c jkm = cikm ensures the agreement on the cluster
prototypes obtained at all peers. Minimizing F is a constrained
nonlinear optimization problem. The general solution is to
consider the augmented Lagrangian of (5) as (6), which is
an unconstrained minimization problem

min G(U, C, P)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

∫

x jn∈RM

M∑

m=1

(x jnm − c jkm)2

× f jn(x j n)dx j n

+
J∑

j=1

∑

i∈N B j

K∑

k=1

M∑

m=1

p j ikm(c jkm − cikm ) (6)

where U = [ujnk] and C = [c jkm] are membership degree
matrix and cluster prototype matrix, respectively, same as
those defined in (5). P = [p j ikm] is the Lagrange multiplier
matrix corresponding to the consensus constraint c jkm = cikm ,
i ∈NB j .

Then the iterative optimization is performed to minimize G
(U, C, P) with respect to one variable of U or C with all other
variables fixed, followed by a gradient descent step over the
multipliers P = [p j ikm]. Define t as iteration index, we have

U(t + 1) = arg min
U

G(C(t), P(t)) (7)

C(t + 1) = arg min
C

G(U(t + 1), P(t)) (8)

P(t + 1) = arg min
P

G(U(t + 1), C(t + 1)). (9)

The update of the membership degree matrix U and the
cluster prototype matrix C are proved in the following theo-
rems.

Theorem 1: Let C(t) and P(t) be fixed, G(U(t + 1)) is
locally minimized if U(t + 1) is given in

u jnk(t + 1) =

⎧
⎪⎨

⎪⎩

1, if ED(o j n, c j k(t)) ≤ ED(o j n, c j r (t))

for 1 ≤ r ≤ K

0, other

(10)

for 1 ≤ j ≤ J , 1 ≤ n ≤ N j , 1 ≤ k ≤ K .
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The proof of Theorem 1 can be easily derived
from [5] and [35]. Here, u jnk = 1 means that the nth object
is assigned to the kth cluster in the j th peer.

Theorem 2: Let U(t + 1) be fixed, G(C(t + 1), P(t + 1)) is
locally minimized if C(t + 1) given via (11), as shown at the
bottom of this page, which is followed by P(t + 1), given via
(12): for 1 ≤ j ≤ J, 1 ≤ k ≤ K , 1 ≤ m ≤ M and

p j ikm(t + 1) = p j ikm(t) + η(c jkm(t + 1) − cikm (t + 1))

(12)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j .
Here, η is a positive parameter that affects the convergence

speed of the clustering algorithm. In practice, a relatively small
value of η is suggested to promote the clustering to converge.

Proof: If U(t + 1) is fixed, by setting the gradient of
G(C(t + 1), P(t)) to zero with respect to c jkm(t + 1), we
obtain

∂G(C(t + 1), P(t))

∂c jkm(t + 1)

= −2

N j∑

n=1

u jnk(t + 1)

×
∫

x jn∈RM
(x jnm − c jkm(t + 1)) f jn(x j n)dx j n

+
∑

i∈N B j

p j ikm(t) −
∑

i∈N B j

pi jkm(t)

= 0 (13)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
From (3) and (13), we have (14), as shown at the bottom

of this page, for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Note that the update of cluster prototypes is followed by a

gradient descent step over the multipliers p j ikm as (12).
In the proposed algorithm, p j ikm(0) and pi jkm(0) are initial-

ized to zero. Then it holds p j ikm(1) = p j ikm(0)+η(c jkm(0)−
cikm (0)) and pi jkm (1) = pi jkm (0) + η(cikm (0) − c jkm(0)).
Therefore, we have p j ikm(1) = −pi jkm (1). Likewise, we have
p j ikm(t) = −pi jkm(t) for ∀t > 0. Substituting it into (14), we
obtain (11). This completes the proof.

The pseudocode of the DUK-means algorithm is summa-
rized in Algorithm 1.

In this algorithm, there are two main phases, namely,
the clustering on individual peer and the communication
to exchange the cluster prototypes between neighbor peers.
They intertwine and occur in a fixed sequence. Initially, each
peer generates its initial cluster prototypes, and broadcasts
its cluster prototypes to its neighbors. Then the clustering is
performed in distributive manner at each peer using the local

Algorithm 1 Distributed Uncertain K-means Clustering
Algorithm

1: For each peer j , randomly generate initial cluster pro-
totypes C j (0), initialize p j ikm(0)=0, broadcast its initial
cluster prototypes to its neighboring peers, t is set to 0;
2: Each peer j update the membership degree U j (t + 1)

via (10) by using C j (t);
3: Each peer j update the cluster prototypes C j (t + 1)

via (11) by using U j (t+1) and P j (t);
4: Each peer j broadcasts the updated cluster prototypes

to its neighboring peers;
5: Each peer j update the multipliers P j (t+1) via (12)

by using C j (t+1) and P j (t);
6: t = t +1;
7: Repeat step2-step6 until the variation of cluster prototypes
of all peers in two consecutive iterations is smaller than a
preset threshold.

data and the cluster prototypes exchanged from its neighbor
peers at this point of time. After one step of clustering,
all peers are ready to start the communication phase. They
broadcast the cluster prototypes to their neighbors and set up
new conditions for the next new phase of the clustering. The
overall optimization takes a finite number of iterations, which
terminates once there is no further significant improvement
in the cluster prototypes of all peers. In practice, when the
variation of cluster prototypes in two consecutive iterations
is smaller than a preset threshold, the peer will send the
“convergence” message to its neighbors. The iteration of the
algorithm will terminate if all peers achieve the convergence.
The satisfying of the consensus constraint c jkm = cikm in the
objective function through Theorem 2 ensure the agreement
on the cluster prototypes of all peers is achieved.

According to the definitions above, we have the com-
putational complexity of the DUK-means algorithm is O
(tNmaxSmaxKM), where t is the number of iterations required,
K is the number of clusters, M is the number of data
dimensions, Nmax is the maximal number of uncertain data
objects in all peers, and Smax is the maximal number of sample
points in all uncertain data objects. Assume that the uncertain
data objects are uniformly distributed on each peer, it means
Nmax ≈ N /J , where N is the total number of data objects
and J is the number of peers. If the numberf of iterative
calculations is the same, the DUK-means algorithm will be
about J times faster than the UK-means algorithm. However,
in practice, due to the incomplete connectivity of distributed
peers, the exchange of cluster prototypes is limited between
neighbor peers. Compared with the UK-means algorithm, the

c jkm(t + 1) =
∑N j

n=1 u jnk(t + 1)
∫

x jn∈RM x jnm f jn(x j n)dx j n − ∑
i∈N B j

p j ikm(t)
∑N j

n=1 u jnk(t + 1)
(11)

c jkm(t + 1) =
∑N

n=1 u jnk(t + 1)
∫

x jn∈RM x jnm f jn(x j n)dx j n − 1
2

∑
i∈N B j

(p j ikm(t) − pi jkm(t))
∑N

n=1 u jnk(t + 1)
(14)
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DUK-means algorithm requires relatively more iterations (this
cost is far less than J ), which impede us from obtaining the
maximum performance improvement. The subsequent experi-
mental results in Section V also demonstrate the case.

C. Consistency Analysis of the Distributed Uncertain
K-Means Clustering Algorithm

In the section above, we present the DUK-means algorithm
for uncertain data clustering. Now, we ask: What are the
results of the distributed clustering? In this section, we give
the proof that the distributed clustering solution on accuracy of
classification achieved by the DUK-means algorithm coincides
with that by the centralized UK-means method.

Theorem 3: The cluster prototypes and the objective func-
tion obtained by the DUK-means algorithm are consistent with
the ones of the centralized UK-means algorithm [13].

Proof: From (11), we have

N j∑

n=1

u jnkc jkm =
N j∑

n=1

u jnk

∫

x jn∈RM
x jnm f jn(x j n)dx j n

−
∑

i∈N B j

p j ikm (15)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Considering all peers, we have

J∑

j=1

N j∑

n=1

u jnkc jkm =
J∑

j=1

N j∑

n=1

u jnk

∫

x jn∈RM
x jnm f jn(x j n)dx j n

−
J∑

j=1

∑

i∈N B j

p j ikm (16)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Let c′

k = [c′
k1, c′

k2, . . . , c′
kM ] for 1 ≤ k ≤ K be the consen-

sus cluster prototypes reached by the DUK-means algorithm,
from (16), we have

c′
km

J∑

j=1

N j∑

n=1

u jnk =
J∑

j=1

N j∑

n=1

u jnk

∫

x jn∈RM
x jnm f jn(x j n)dx j n

−
J∑

j=1

∑

i∈N B j

p j ikm (17)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
It follows (18), as shown at the bottom of this page, for

1 ≤ k ≤ K , 1 ≤ m ≤ M .
Let p j ikm (0) and pi jkm (0) be initialized to zero, from (12),

we have p j ikm(t) = −pi jkm(t) for ∀t > 0. Therefore, we have

J∑

j=1

∑

i∈N B j

p j ikm = 0 (19)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .

Substituting (19) into (18), we obtain

c′
km =

J∑

j=1

N j∑

n=1

u jnk

∫

x jn∈RM
x jnm f jn(x j n)dx j n

/ J∑

j=1

N j∑

n=1

u jnk

(20)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Note that if all objects are collected into one central unit

from all peers, the cluster prototypes in (20) are consistent
with the centralized ones obtained by the UK-means algorithm
where N = ∑J

j=1 N j is the total number of objects of all
peers.

Similar to the consistence proof of cluster prototypes, we
obtain the objective function of the DUK-means algorithm
with the consensus cluster prototypes as

F(U, C) =
J∑

j=1

N j∑

n=1

K∑

k=1

u jnkED(o j n, c j k)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk E D
(
o j n, c′

k

)
. (21)

As in the above, if all objects are collected into one central
unit from all peers, the objective function in (21) is consistent
with the centralized one obtained by the UK-means algorithm
where N = ∑J

j=1 N j is the total number of objects of all
peers. This completes the proof.

III. OPTIMIZATION OF THE DISTRIBUTED UNCERTAIN

K-MEANS CLUSTERING ALGORITHM

In the actual iterative execution of the DUK-means algo-
rithm, we need to calculate the ED between each object and
the cluster prototype, which is not only a computationally
expensive process but also one of most frequently executed
operations. To improve efficiency, a reduction technique is
used to optimize the DUK-means algorithm to the distributed
K-means (DK-means) algorithm.

First, we define the expected centroid z j n as (22) for each
uncertain object o j n

z j n =
∫

x jn∈RM
f jn(x j n)x j ndx j n. (22)

We have

‖x j n − c j k‖2 = ‖x j n − z j n‖2 + ‖c j k − z j n‖2

− 2(c j k − z j n)
T · (x j n − z j n). (23)

c′
km =

∑J
j=1

∑N j
n=1u jnk

∫
x jn∈RM x jnm f jn(x j n)dx j n − ∑J

j=1
∑

i∈N B j
p j ikm

∑J
j=1

∑N j
n=1 u jnk

(18)
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Then we can calculate the difference between ED(o j n , c j k)
and ED(o j n, z j n) as

ED(o j n, c j k) − ED(o j n, z j n)

=
∫

x jn∈RM
(‖x j n − c j k‖2 − ‖x j n − z j n‖2) f jn(x j n)dx j n

=
∫

x jn∈RM
(‖c j k − z j n‖2 − 2(c j k − z j n)

T · (x j n − z j n))

× f jn(x j n)dx j n

= ‖c j k − z j n‖2. (24)

Then the objective function of DUK-means algorithm is
transformed into

F(U, C) =
J∑

j=1

N j∑

n=1

K∑

k=1

u jnkED(o j n, z j n)

+
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk‖c j k − z j n‖2. (25)

When the objects and their pdfs are fixed, the first term
above is a constant. The objective function can be reduced
to the minimization problem of the squared distance between
object expected centroids and cluster prototypes

min F ′(U, C) =
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

M∑

m=1

(c jkm − z jnm)2

s.t. c jkm = cikm , i ∈ N B j . (26)

Therefore, we have a new method to solve the problem
of distributed clustering for uncertain data. First, we can
preprocess the data via (22) to calculate the expected centroids
of objects as the certain input data. Then the optimization
problem (26) with constraints can be solved with its aug-
mented Lagrangian as

min G′(U, C, P′) =
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

M∑

m=1

(c jkm − z jnm)2

+
J∑

j=1

∑

i∈N B j

K∑

k=1

M∑

m=1

p′
j ikm(c jkm − cikm ).

(27)

Then the matrices U and C will be updated via
Theorems 4 and 5.

Theorem 4: Let C(t) and P′(t) be fixed, G′(U(t + 1)) is
locally minimized if U(t + 1) is given by

u jnk(t + 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if
M∑

m=1

(c jkm(t) − z jnm)2 ≤
M∑

m=1

(c jrm(t) − z jnm)2

for 1 ≤ r ≤ K
0, other

(28)

for 1 ≤ j ≤ J , 1 ≤ n ≤ N j , 1 ≤ k ≤ K .
Theorem 5: Let U(t + 1) be fixed, G′(C(t + 1), P′(t)) is

locally minimized if C(t +1) given via the following equation

is then followed by P′(t + 1), given via (30):

c jkm(t + 1) =
∑N j

n=1 u jnk(t + 1)z jnm − ∑
i∈N B j

p′
j ikm(t)

∑N j
n=1 u jnk(t + 1)

(29)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j and

p′
j ikm(t + 1) = p′

j ikm(t) + η(c jkm(t + 1) − cikm (t + 1)) (30)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j where η is
a positive scalar.

The proofs of these two theorems are very similar to those
of Theorems 1 and 2.

According to Theorem 3, we also can give the proof that
the cluster prototypes achieved by the DK-means algorithm
coincides with the ones in the following equation obtained
by the centralized CK-means algorithm [19], i.e., the classical
centralized K-means algorithm [5]:

ckm =
N∑

n=1

unk znm

/ N∑

n=1

unk (31)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M, where N = ∑J
j=1 N j is the

total number of all objects.
At this point, we can conclude that the DK-means algorithm

provides an efficient solution for uncertain data clustering on
accuracy of classification, which coincides with that of the
centralized CK-means method. In fact, DK-means algorithm
is locally optimal with respect to the DUK-means objective
function by replacing each uncertain data object with its
expected centroid. We also wish to point out that the con-
sensus constraint c jkm = cikm ensures the agreement on the
cluster prototypes obtained at all peers. Hence, the DK-means
algorithm can achieve the global clustering solution similar to
the one obtained by the P2P K-means algorithm [25].

IV. ATTRIBUTE WEIGHTED DISTRIBUTED

UNCERTAIN CLUSTERING

A. Attribute Weighted Distributed Uncertain K-Means
Clustering Algorithm

For many real applications, especially the high-dimensional
sparse data clustering, the cluster structure in the data set is
often limited to a subset of features rather than the entire
feature set. A better solution is to introduce the proper attribute
weight into the clustering process according to the importance
of different dimensions for cluster identification, which is
referred to as subspace clustering [30]. With reference to
the early research of entropy weighting K-means (EWKM)
clustering method [31] and [32], we propose the attribute
weighted DUK-means (WDUK-means) clustering algorithm,
in which the attribute-weight-entropy regularization technique
is considered to achieve the ideal distribution of attribute
weights. The new ED is defined as the following equation
and the new objective function is developed as (33):

ED(o j n, c j k)

=
∫

x jn∈RM

M∑

m=1

w jkm(x jnm − c jkm)2 f jn(x j n)dx j n (32)
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and

min F(U, C, W)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

∫

x jn∈RM

M∑

m=1

w jkm(x jnm − c jkm)2

× f jn(x j n)dx j n

+ γ

J∑

j=1

K∑

k=1

M∑

m=1

w jkm log w jkm

s.t. c jkm = cikm , i ∈ N B j

w jkm = wikm , i ∈ N B j ,

M∑

m=1

w jkm = 1

0 ≤ w jkm ≤ 1 (33)

where U = [ujnk] and C = [c jkm] are membership degree
matrix and cluster prototype matrix respectively, same as
defined in (5). W = [w jkm] is the attribute weight matrix
and w jkm denotes the mth dimension of the kth cluster weight
vector in the j th peer. γ is a positive scalar.

In this new objective function, the second term is the neg-
ative entropy of attribute weights that regularize the optimal
distribution of all attribute weights according to the available
data. γ (γ >0) is a positive regularizing and adjustable para-
meter. With a proper choice of γ , we can balance the two
terms to find the optimal solution.

The augmented Lagrangian technique is also applied to
solve this constrained optimization problem as

min G(U, C, P, W, Q)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

∫

x jn∈RM

M∑

m=1

w jkm(x jnm − c jkm)2

× f jn(x j n)dx j n

+ γ

J∑

j=1

K∑

k=1

M∑

m=1

w jkm log w jkm

+
J∑

j=1

∑

i∈N B j

K∑

k=1

M∑

m=1

p j ikm(c jkm − cikm )

+
J∑

j=1

∑

i∈N B j

K∑

k=1

M∑

m=1

q j ikm(w jkm − wikm )

−
J∑

j=1

K∑

k=1

γ j k

(
M∑

m=1

w jkm − 1

)

. (34)

The matrices U, C, and W are updated corresponding
to (35)–(39), respectively

u jnk(t + 1) =

⎧
⎪⎨

⎪⎩

1, if ED(o j n, c j k(t)) ≤ ED(o j n, c j r (t))

for 1 ≤ r ≤ K

0, other

(35)

for 1 ≤ j ≤ J , 1 ≤ n ≤ N j , 1 ≤ k ≤ K , and (36), shown
at the bottom of this page, for 1 ≤ j ≤ J , 1 ≤ k ≤ K ,
1 ≤ m ≤ M

p jikm(t + 1) = p j ikm(t) + η1(c jkm(t + 1) − cikm (t + 1))

(37)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j where
η1 is a positive scalar defined as η. Equation (38), as shown
at the bottom of this page, holds for 1 ≤ j ≤ J , 1 ≤ k ≤ K ,
1 ≤ m ≤ M , and

q j ikm(t + 1) = q j ikm(t) + η2(w jkm(t + 1) − wikm (t + 1))

(39)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j where η2
is a positive scalar defined as η.

Here, P = [p j ikm ] and Q = [q j ikm] are two matrices
containing the Lagrange multipliers corresponding to the con-
sensus constraints c jkm = cikm and w jkm = wikm , i ∈NB j .
η1 and η2 are positive scalars. The iterative optimization
analysis can be found in Appendix A. The pseudocode of the
WDUK-means algorithm is summarized in Algorithm 2.

B. Optimization of the Attribute Weighted Distributed
Uncertain K-Means Clustering Algorithm

With reference to Section III, we can also reduce the
WDUK-means algorithm to its deterministic form, i.e., the
attribute weighted distributed K-means (WDK-means) algo-
rithm, as follows:

min F ′(U, C, W)

=
J∑

j=1

N j∑

n=1

K∑

k=1

u jnk

M∑

m=1

w jkm(c jkm − z jnm)2

+ γ

J∑

j=1

K∑

k=1

M∑

m=1

w jkm log w jkm . (40)

Here, z j n = ∫
x jn∈RM f jn(x j n)x j ndx j n is the centroid of the

uncertain object x j n. The detailed derivation process of the
reduction is shown in Appendix B.

c jkm(t + 1) =
∑N j

n=1 u jnk(t + 1)w jkm(t)
∫

x jn∈RM x jnm f jn(x j n)dx j n − ∑
i∈N B j

p j ikm(t)
∑N j

n=1 u jnk(t + 1)w jkm(t)
(36)

w jkm(t + 1) =
exp

(
− ∑N j

n=1 u jnk(t+1)
∫

x jn∈RM (x jnm−c jkm (t+1))2 f jn(x jn )dx jn−2
∑

i∈N B j
q j ikm (t)

γ

)

∑M
s=1 exp

(
− ∑N j

n=1 u jnk(t+1)
∫

x jn∈RM (x jns−c jks (t+1))2 f jn(x jn)dx jn−2
∑

i∈N B j
q j iks (t)

γ

) (38)
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Algorithm 2 Attribute Weighted Distributed Uncertain
K-Means Clustering Algorithm

1: For each peer j , randomly generate initial cluster pro-
totypes, set the initial value of attribute weight to 1/M ,
initialize p j ikm(0) = 0 and q j ikm(0) = 0, broadcast its initial
cluster prototypes and attribute weights to its neighboring
peers, t = 0;
2: Each peer j update the membership degree U j (t + 1)

via (35) by using C j (t);
3: Each peer j update the cluster prototypes C j (t+1)

via (36) by using U j (t+1), W j (t) andP j(t);
4: Each peer j broadcasts the updated cluster prototypes

to its neighboring peers;
5: Each peer j update the multipliers P j (t+1) via (37)

by using C j (t+1) and P j (t);
6: Each peer j update the attribute weights W j (t +1) via

(38) by using U j (t + 1), C j (t + 1) and Q j (t);
7: Each peer j broadcasts the updated attribute weights

to its neighboring peers;
8: Each peer j update the multipliers Q j (t + 1) via (39)

by using W j (t+1) and Q j (t);
9: t = t +1;
10: Repeat step2-step9 until the variation of cluster proto-
types of all peers in two consecutive iterations is smaller
than a preset threshold.

Then the matrices U, C, and W will be updated
via (41)–(45) to solve the constrained optimization problem
above. The pseudocode of the WDK-means algorithm can be
referred to in Algorithm 2

u jnk(t + 1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if
M∑

m=1

(c jkm(t) − z jnm)2 ≤
M∑

m=1

(c jrm(t) − z jnm)2

for 1 ≤ r ≤ K

0, other

(41)

for 1 ≤ j ≤ J , 1 ≤ n ≤ N j , 1 ≤ k ≤ K

c jkm(t + 1)

=
∑N j

n=1 u jnk(t + 1)w jnk(t)z jnm − ∑
i∈N B j

p′
j ikm(t)

∑N j
n=1 u jnk(t + 1)w jnk(t)

(42)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M

p′
j ikm(t + 1) = p′

j ikm(t) + η1(c jkm(t + 1) − cikm (t + 1))

(43)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j , where η1
is a positive scalar. Equation (44), as shown at the bottom of

this page, holds for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , and

q ′
j ikm(t + 1) = q ′

j ikm(t) + η2(w jkm(t + 1) − wikm (t + 1))

(45)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ N B j , where η2
is a positive scalar.

With reference to Appendix A, we can give the iterative
optimization analysis for the equations.

In addition, we also give the consistency analysis of the
WDK-means algorithm shown in Appendix C. It proves that
the distributed clustering solution obtained by the WDK-means
algorithm coincides with that by the centralized EWKM
algorithm [31], including cluster prototypes and attribute
weights.

V. EXPERIMENTS

To evaluate the performance of proposed algorithms
(the DUK-means algorithm, the DK-means algorithm, the
WDUK-means algorithm, and the WDK-means algorithm),
a series of experiments are conducted with synthetic and
real-world data. Two centralized clustering algorithms for
uncertain data, including the UK-means algorithm [13] and the
CK-means algorithm [19], are chosen for the comparative
analysis. All experiment data are normalized to the interval
[0, 1]. For all the clustering algorithms, the stopping threshold
is uniformly set to 10−6.

Four clustering performance metrics are considered in our
experiments, including the classification rate (CR) [36], the
normalized mutual information (NMI) [37], the adjusted rand
index (ARI) [38], and the CPU time (CT) [19]. Because the
proposed algorithms are all K-means type clustering methods,
the clustering results are very sensitive to the initial cluster
prototypes. To achieve the convincing clustering results, we
let each algorithm be executed on each data set 100 times
(the cluster prototypes are randomly initialized at each time)
and calculate the average of CR (ACR), the average of
NMI (ANMI), the average of ARI (AARI), and the average of
CT (ACT). Note that compared with the clustering operations,
the communication cost is very small, in microseconds per
message. We do not include it in the CT.

A. Synthetic Data Sets

This experiment works on a distributed P2P network in
which peers are distributed uniformly over a 500 m × 500 m
region. The communication range of each peer R is set to
100 m, i.e., each peer only exchanges information with its
immediate topological neighbors in the communication range.
Fig. 1 illustrates an example of such a kind of distributed P2P
network with 50 peers.

The synthetic data are generated in a continuous 2-D space
(M = 2). Assume each peer contains 150 uncertain objects

w jkm(t + 1) =
exp

(
−γ −1 ∑N j

n=1 u jnk(t + 1)(c jkm(t + 1) − z jnm)2 − 2γ −1 ∑
i∈N B j

q ′
j ikm(t)

)

∑M
l=1 exp

(
−γ −1

∑N j
n=1 u jnk(t + 1)(c jkl(t + 1) − z jnl)2 − 2γ −1

∑
i∈N B j

q ′
j ikl(t)

) (44)
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Fig. 1. Distribution of 50 peers in a P2P network.

Fig. 2. Three types of distributions. (a) Uniform. (b) Gaussian. (c) Inverse
Gaussian.

belonging to three clusters (K = 3). Each cluster has 50
uncertain objects. For each uncertain object, a centroid point
is first generated from a mixture of three bivariate Gaussian
densities given by

0.33 ∗ N

[(
5.0
5.0

)

,

(
σ 2 0.0
0.0 σ 2

)]

+ 0.33 ∗ N

[(
5.0
10.0

)

,

(
σ 2 0.0
0.0 σ 2

)]

+ 0.34 ∗ N

[(
10.0
10.0

)

,

(
σ 2 0.0
0.0 σ 2

)]

where σ is the bandwidth. Then centered at this centroid point,
a total of |S| = 1000 sample points are observed at random
following one of the three types of distributions, which include
the uniform distribution, the Gaussian distribution, and the
inverse Gaussian distribution, as shown in Fig. 2. Here, the
red solid circle indicates the centroid point. In the synthetic
data experiments, we assume each cluster corresponds to one
type of distribution.

Then three data sets are created as follows: E1 contains
30 × 150 = 4500 uncertain objects with 30 peers (N = 4500,
J = 30), E2 contains 50 × 150 = 7500 uncertain objects with
50 peers (N = 7500, J = 50), and E3 contains 70 × 150 =
10 500 uncertain objects with 70 peers (N = 10 500, J = 70).
For different data set E1, E2, and E3, σ 2 is set to different
values with 1.5, 2.0, and 2.5. Fig. 3 illustrates the distribution
of 150 centroid points of one peer in E2.

Fig. 4 lists the clustering results of different uncertain
clustering algorithms on three synthetic data sets E1, E2, and
E3. They draw similar conclusions. The difference is because
of the different values of σ 2 and the different sizes of data
sets. On the one hand, the larger σ 2 indicates more overlap
of the data in different clusters and lower CR and vice versa.
On the other hand, the bigger size of data set needs more
execution time for clustering and vice versa. From Fig. 4(a), an
important finding is that the proposed distributed algorithms
(DUK-means, DK-means, WDUK-means and WDK-means)

Fig. 3. Distribution of 150 object centroids of one peer in E2.

are about 10–40 times faster than their corresponding central-
ized approaches (UK-means and CK-means). Particularly,
DK-means and WDK-means with the reduction technique
achieve further enormous time savings (about 99%) com-
pared with DUK-means and WDUK-means as shown in
Fig. 4(b). More importantly, in Fig. 4(c)–(e), the results of
the proposed distributed algorithms (DUK-means, DK-means,
WDUK-means, and WDK-means) in ACR and ANMI are very
close to the ones obtained by the corresponding centralized
approaches (UK-means and CK-means). This verifies the
consistency of the clustering results between our distributed
algorithms and the traditional centralized methods.

Another finding is that the proposed distributed algo-
rithms with attribute-weight-entropy regularization technique
(WDUK-means and WDK-means) do not provide signifi-
cant improvements in ACR and ANMI compared with other
approaches. That is because the data dimension is only two
in this experiment. The feature weighting has small impact on
the clustering results. We will further discuss this issue in the
following experiments.

As a short summary of the observations above, when
the centralized clustering approaches are discouraged by the
technical constraints like the volume size of data and the
privacy and security problems like no full data transmission
is permitted, the distributed clustering approaches proposed in
this paper are a good selection. In these methods, great savings
in execution time will be achieved without affecting CR in
clustering. Moreover, the reduction technique for uncertain
clustering can further significantly shorten the execution time
of the algorithm.

B. UCI Machine Learning Data Sets

In this section, we consider our algorithms on some uncer-
tain data generated by extending the certain data sets in UCI
machine learning repository [39]. For each data point in a
certain data set, we design a Gaussian distribution centered at
this data point and randomly samples 1000 data according to
the Gaussian distribution. We take the 1000 samples as the
observed values for the uncertain data. As mentioned earlier,
we only use (1) to approximate the distribution of uncertain
data and emulate the situation of real applications in which
we only have some observations of uncertain data.

Seven real-world certain data sets from UCI machine
learning repository are chosen to be transformed for our
experiments, which include Iris (N = 150, K = 3, M = 4),
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Fig. 4. Three statistics of different uncertain clustering algorithms on the
synthetic data sets in terms of (a) and (b) ACT(Milliseconds), (c) ACR(%),
(d) ANMI, and (e) AARI.

Glass (N = 214, K = 6, M = 9), Ionosphere (N = 351,
K = 2, M = 33), Haberman (N = 306, K = 2, M = 3),
Heart (N = 267, K = 2, M = 44), Wine (N = 178, K = 3,
M = 13), and Wdbc (N = 569, K = 2, M = 30). Because the
number of data objects in these data sets is relatively small,
only three peers (J = 3) are considered to be deployed in

Fig. 5. Simple linear network architecture.

TABLE I

STATISTICS OF DIFFERENT UNCERTAIN CLUSTERING ALGORITHMS ON

THE UCI MACHINE LEARNING DATA SETS IN TERMS OF ACT (ms),
ACR(%), ANMI, AND AARI

the distributed P2P networks, and the simple linear network
structure shown in Fig. 5 is adopted.

The clustering results are listed in Table I. Without any
surprise, most experiments show the similar conclusion with
the experiment above. This demonstrates the efficiency of the
proposed distributed uncertain data clustering algorithms. It is
worth pointing out that the proposed WDUK-means algorithm
and WDK-means algorithm have shown excellent performance
in ACR, ANMI, and AARI with the cost of a little more
execution time on the Iris data set (about 10% promotion in
ACR), which attributes to the introduction of attribute-weight-
entropy regularization technique.

In order to have an intuitive understanding of the inherent
properties of this technique, we further investigate the
distribution of four attributes/dimensions of original Iris data,
as shown in Fig. 6. Note that these data points are actu-
ally regarded as the centroid of the corresponding uncertain
objects. We can clearly see that attributes 3 and 4 are more
compact in each cluster. They should be more important
and contribute much more than the other two attributes in
clustering, so that higher weights should be assigned to these
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Fig. 6. Distribution of four attributes of the Iris data set. (a) Attribute 1.
(b) Attribute 2. (c) Attribute 3. (d) Attribute 4.

TABLE II

ATTRIBUTE WEIGHT ASSIGNMENT OBTAINED BY THE WDUK-MEANS

ALGORITHM AND THE WDK-MEANS ALGORITHM ON THE

IRIS DATA SET

two attributes. This can be verified by Table II, in which
attributes 3 and 4 have higher weights than attributes 1 and 2
for each attribute weighted distributed clustering algorithm.
All these demonstrate the efficiency of the attribute-weight-
entropy regularization technique for data clustering with
different distributions of each dimension.

VI. CONCLUSION

This paper focuses on uncertain data clustering problem and
proposes a distributed clustering algorithm in P2P networks.
The centralized clustering solution is obtained in a distributive
mode at each peer by collaborating with the neighboring peers
only. Based on the reduction technique, the distributed uncer-
tain data clustering algorithm actually turns out to be equiva-
lent to the deterministic clustering, which greatly shortens the
execution time of the algorithm. The attribute-weight-entropy
regularization technique is applied in the distributed clustering
method to achieve ideal distribution of attribute weights, which
ensures the good clustering results. Experiments on several
synthetic and real-world data sets have demonstrated the
good performance of the proposed algorithms. The results of
this paper provide some valuable directions for future work.

The proposed algorithm is of great generality and could
be further applied in uncertain data clustering research in
distributed environments.

Currently, most of the study on clustering set the number
of clusters as a user-defined parameter, which is difficult to
specify. In the research of centralized clustering, some scholars
have tried to determine the most appropriate number of clusters
through the cluster validation techniques [40], [41]. However,
in the distributed clustering, this is still a hard problem
because it is sometime difficult to collect all the data or the
data membership information due to the privacy and security
concerns or the technical constraints brought by distributive
environments. In this paper, the number of clusters is prede-
termined. Supervising the distributed clustering algorithm to
optimize the number of clusters and the clustering performance
together will be considered as a good direction of future
work. In addition, we assume that different dimensions of the
data are independent and their pdfs can be approximated by
multiple kernel functions separately. To consider a nontrivial
covariance structure or dependent attributes/dimensions is a
tough problem in the distributed environment and will be
another good future research direction.

APPENDIX A
ITERATIVE OPTIMIZATION ANALYSIS OF THE

WDUK-MEANS ALGORITHM

Theorem A.1: Let C(t) and W(t) be fixed, G(U(t + 1)) is
locally minimized if U(t + 1) is given via (35).

The proof of Theorem A.1 can be easily derived from
[5] and [35].

Theorem A.2: Let U(t + 1) and W(t) be fixed, G(C(t + 1),
P(t + 1)) is locally minimized if C(t + 1) given via (36) is
followed by P(t + 1) given via (37).

Proof: If U(t + 1) and W(t) are fixed, by setting the
gradient of G(C(t+1), P(t)) to zero with respect to c jkm(t+1),
we obtain

∂G(C(t + 1), P(t))

∂c jkm(t + 1)

= −2

N j∑

n=1

u jnk(t + 1)

∫

x jn∈RM
w jkm(t)(x jnm − c jkm(t + 1))

× f jn(x j n)dx j n

+
∑

i∈N B j

p j ikm(t) −
∑

i∈N B j

pi jkm (t)

= 0 (A.1)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
From (A.1), we have (A.2), as shown at the top of the next

page, for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Note that the update of cluster prototypes is followed

by a gradient descent step over the multipliers p j ikm(t) as
p j ikm(t) = p j ikm(t−1)+η1(c jkm(t)−cikm (t)) for 1 ≤ j ≤ J ,
1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ NB j , where η1 is a positive
scalar. If p j ikm (0) and pi jkm (0) are initialized to zero, we have
p j ikm(t) = −pi jkm(t) for ∀t >0. Substituting it into (A.2), we
obtain (36). This completes the proof.
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c jkm(t + 1) =
∑N

n=1 u jnk(t + 1)w jkm(t)
∫

x jn∈RM x jnm f jn(x j n)dx j n − 1
2

∑
i∈N B j

(p j ikm(t) − pi jkm(t))
∑N

n=1 u jnk(t + 1)w jkm(t)
(A.2)

Theorem A.3: Let U(t+1) and C(t+1) be fixed, G(W(t+1),
Q(t + 1)) is locally minimized if W(t + 1) given via (38) is
followed by Q(t + 1) given via (39).

Proof: If U(t + 1) and C(t + 1) are fixed, by setting the
gradient of G(W(t + 1), Q(t), �) to zero with respect to λjk
and w jkm(t+1), we obtain

∂G(W(t + 1), Q(t),�)

∂λ j k

= −
(

M∑

m=1

w jkm(t + 1) − 1

)

= 0 (A.3)

∂G(W(t + 1), Q(t),�)

∂ w jkm(t + 1)

=
N j∑

n=1

u jnk(t + 1)

∫

x jn∈RM
(x jnm −c jkm(t+1))2 f jn(x j n)dx j n

+ γ (log w jkm(t + 1) + 1) − λ j k +
∑

i∈N B j

q j ikm(t)

−
∑

i∈N B j

qi jkm (t)

= 0 (A.4)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
From (A.4), we have

w jkm(t + 1)

= exp

⎛

⎝−γ −1
N j∑

n=1

u jnk(t + 1)

∫

x jn∈RM
(x jnm − c jkm(t+1))2

× f jn(x j n)dx j n−γ −1

⎛

⎝
∑

i∈N B j

q j ikm(t) −
∑

i∈N B j

qi jkm (t)

⎞

⎠

⎞

⎠

× exp(−1 + γ −1λ j k) (A.5)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
From (A.5) and (A.3), we have (A.6), as shown at the top

of the next page, for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Similar to the cluster prototypes, the update of attribute

weights is followed by a gradient descent step over the
multipliers q j ikm(t) as q j ikm(t) = q j ikm(t −1)+η2(w jkm(t)−
wikm (t)) for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M , i ∈ NB j ,
where η2 is a positive scalar. If q j ikm (0) and qi jkm (0) are
initialized to zero, we have q j ikm(t) = −qi jkm(t) for ∀t > 0.
Substituting this into (A.6), we obtain (38). This completes
the proof.

APPENDIX B
REDUCTION OF THE WDUK-MEANS ALGORITHM TO

THE WDK-MEANS ALGORITHM

Let D jk = diag(w jk1, w jk2, . . . , w jkM ) denote the weight
matrix corresponding to the attribute weight vector wjk, z j n =

∫
x jn∈RM f jn(x j n)x j ndx j n, we have

M∑

m=1

w jkm(x jnm − c jkm)2

=
M∑

m=1

w jkm(x jnm − z jnm)2 +
M∑

m=1

w jkm(c jkm − z jnm)2

− 2(c j k − z j n)
T · D jk · (x j n − z j n). (B.1)

According to (32), calculate the difference between ED(x j n,
cjk) and ED(x j n, z j n) as

ED(o j n, c j k) − ED(o j n, z j n) =
M∑

m=1

w jkm(c jkm − z jnm)2.

(B.2)

Then the objective function of the WDUK-means algorithm
is transformed into

F(U, C, W)

=
J∑

j=1

K∑

n=1

K∑

k=1

u jnk

∫

x jn ∈RM
w jkm(x jnm −z jnm)2 f jn(x j n)dx j n

+
J∑

j=1

K∑

n=1

K∑

k=1

u jnk

M∑

m=1

w jkm(c jkm − z jnm)2

+ γ

J∑

j=1

K∑

k=1

M∑

m=1

w jkm log w jkm . (B.3)

When the objects and their pdfs are fixed, the first term
above is a constant. The objective function is reduced to its
deterministic form as (40).

APPENDIX C
CONSISTENCY ANALYSIS OF THE WDK-MEANS

ALGORITHM

In this Appendix, we give the proof that the distributed
clustering solution achieved by the WDK-means algorithm
coincides with that by the centralized EWKM algorithm [31].

Theorem C.1: The cluster prototypes obtained by the
WDK-means algorithm are consistent with that by the cen-
tralized clustering method.

Proof: From (42), we have

N j∑

n=1

u jnkw jnkc jkm =
N j∑

n=1

u jnkw jnkz jnm −
∑

i∈N B j

p j ikm (C.1)

for 1 ≤ j ≤ J , 1 ≤ k ≤ K , 1 ≤ m ≤ M .
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w jkm(t + 1)

=
exp

(
−γ −1 ∑N j

n=1 u jnk(t + 1)
∫

x jn ∈RM (x jnm − c jkm(t + 1))2 f jn(x j n)dx jn − γ −1 ∑
i∈N B j

(q j ikm(t) − qi jkm (t))
)

∑M
l=1 exp

(
−γ −1

∑N j
n=1 u jnk(t + 1)

∫
x jn ∈RM (x jnl − c jkl(t + 1))2 f jn(x j n)dx j n − γ −1

∑
i∈N B j

(q j ikl (t) − qi jkl (t))
)

(A.6)

Considering all peers, we have

J∑

j=1

N j∑

n=1

u jnkw jnkc jkm =
J∑

j=1

N j∑

n=1

u jnkw jnkz jnm

−
J∑

j=1

∑

i∈N B j

p j ikm (C.2)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Let c

′
k = [c′

k1, c′
k2, . . . , c′

kM ] for 1 ≤ k ≤ K be the
consensus cluster prototypes reached by the WDK-means
algorithm, from (C.2), we have

c′
km

J∑

j=1

N j∑

n=1

u jnkw jnk =
J∑

j=1

N j∑

n=1

u jnkw jnkz jnm

−
J∑

j=1

∑

i∈N B j

p j ikm (C.3)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
It follows that:

c′
km =

∑J
j=1

∑N j
n=1 u jnkw jnkz jnm − ∑J

j=1
∑

i∈B j
p j ikm

∑J
j=1

∑N j
n=1 u jnkw jnk

(C.4)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Let p j ikm (0) and pi jkm (0) be initialized to zero, from (43),

we have p j ikm(t) = −pi jkm (t) for ∀t >0. Therefore, we have

J∑

j=1

∑

i∈N B j

p j ikm = 0 (C.5)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Substituting (C.5) into (C.4), we obtain

c′
km =

J∑

j=1

N j∑

n=1

u jnkz jnm

/ J∑

j=1

N j∑

n=1

u jnk (C.6)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .

Note that if all objects are collected into one central unit
from all peers, the cluster prototypes in (C.6) are consistent
with the centralized ones obtained by the EWKM algo-
rithm [31]. This completes the proof.

Theorem C.2: The attribute weights obtained by the
WDK-means algorithm are consistent with that by the cen-
tralized clustering method.

Proof: Let w′
k = [w′

k1, w′
k2, . . . , w′

kM ] for 1 ≤ k ≤ K be
the consensus attribute weights reached by the WDK-means
algorithm, from (44), we have (C.7), as shown at the bottom
of this page, for 1 ≤ k ≤ K , 1 ≤ m ≤ M .

It follows that (C.8), as shown at the bottom of this page,
for 1 ≤ k ≤ K , 1 ≤ m ≤ M .

According to the constraint of attribute weights, we have

M∑

m=1

w′
km = 1 (C.9)

for 1 ≤ k ≤ K .
Then we have (C.10), as shown at the top of the next page.
From (C.8), as shown at the bottom of this page, and (C.10),

we obtain (C.11), as shown at the top of the next page.
Let q j ikm (0) and qi jkm (0) be initialized to zero, from (45),

we have q j ikm(t) = −qi jkm(t) for ∀t > 0. Then we have

J∑

j=1

∑

i∈N B j

q j ikm = 0 (C.12)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Substituting (C.12) into (C.11), we obtain

w′
km =

J

√

exp
(
−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkm − z jnm)2

)

∑M
l=1

J

√

exp
(
−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkl − z jnl)2

)

(C.13)

for 1 ≤ k ≤ K , 1 ≤ m ≤ M .
Similar to the consistence proof of cluster prototypes, by

comparing (C.13) with the attribute weights (C.14) obtained
by the centralized EWKM algorithm [31], we know that (C.14)

(w′
km)J =

∏J
j=1 exp

(−γ −1 ∑N j
n=1 u jnk(c jkm − z jnm)2 − 2γ −1 ∑

i∈N B j
q j ikm

)

∏J
j=1

∑M
l=1 exp

(−γ −1
∑N j

n=1 u jnk(c jkl − z jnl)2 − 2γ −1
∑

i∈N B j
q j ikl

) (C.7)

w′
km =

J
√

exp
(−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkm − z jnm)2 − 2γ −1

∑J
j=1

∑
i∈N B j

q j ikm
)

J
√∏J

j=1
∑M

l=1 exp
(−γ −1

∑N j
n=1 u jnk(c jkl − z jnl)2 − 2γ −1

∑
i∈N B j

q j ikl
) (C.8)
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∑M
m=1

J
√

exp
(−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkm − z jnm)2 − 2γ −1

∑J
j=1

∑
i∈N B j

q j ikm
)

J
√∏J

j=1
∑M

l=1 exp
(−γ −1

∑N j
n=1 u jnk(c jkl − z jnl)2 − 2γ −1

∑
i∈N B j

q j ikl
) = 1 (C.10)

w′
km =

J
√

exp
(−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkm − z jnm)2 − 2γ −1

∑J
j=1

∑
i∈N B j

q j ikm
)

∑M
l=1

J
√

exp
(−γ −1

∑J
j=1

∑N j
n=1 u jnk(c jkl − z jnl)2 − 2γ −1

∑J
j=1

∑
i∈N B j

q j ikl
) (C.11)

is a special case of (C.13) in which all the data are collected
in one node

wkm = exp
( − γ

∑N
n=1 unk(ckm − znm)2

)

∑M
l=1 exp

( − γ
∑N

n=1 unk(ckl − znl)2
) . (C.14)

This completes the proof.
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